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Since the financial crisis in 2007-2008, the vulnerability of a financial system has become a major concern in

financial engineering. In this paper, we analyze the vulnerability of a financial network based on the linear

optimization model introduced by Eisenberg and Noe (2001), where the right hand side of the constraints is

subject to market shock and only limited information regarding the liability matrix is exposed. We develop

a new extended sensitivity analysis to characterize the conditions under which a bank is solvent, default

or bankrupted, and estimate the probability of insolvency and the probability of bankruptcy under mild

conditions on the market shock and the network structure. Particularly, we show that while an increment in

the total asset may not able to improve the stability of the financial system, a larger asset inequality in the

system will reduce its stability. Moreover, under certain assumption on the market shock and the network

structure, we show that the least stable network can be attained at some network with a monopoly node,

which also has the highest probability of insolvency. The probability of bankruptcy in the network when all

the nodes receive shocks is estimated. We also estimate the impact of bankruptcy of the monopoly node in

a well-balanced network and explore the domino effect of bankruptcy when the network has a tridiagonal

structure. Numerical experiments are presented to verify the theoretical conclusions.

Key words : Financial network, Systemic risk, Linear optimization, Sensitivity analysis, (In)feasibility

analysis, Stochastic optimization, Probability.

1. Introduction

A typical financial network comprises multiple financial institutions interacting with each other

through borrowing and lending or interconnecting indirectly through the market by holding similar

shares or portfolios. The presence of tight linkages among the financial institutions has various con-

sequences in the global financial market. On the one hand, it influences asset prices by acquiring and

processing the related information more efficiently, and as a result, large numbers of transactions

can be proceeded smoothly without any interruptions and the trading performance is improved. On

the other hand, whenever some institution bankrupts in the system, it may lead to a catastrophic

disaster by spreading this failure quickly over the entire system. This is usually referred as the

so-called systemic risk. As evidence we recall the 2008 financial crisis in US that have triggered
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not only the entire U.S. financial industries but also several international financial markets around

the world (Murphy 2008). Another example is the European sovereignty debt crisis that causes the

European financial business to face serious loss of confidence (Lane 2012).

The catastrophic consequences from these widespread phenomena have prompted extensive study

on the assessment of the systemic risk and the contagion effect in a financial network. In a seminal

paper, Eisenberg and Noe (2001) introduce the clearing payment system considering bankruptcy

law to assess the systemic risk in inter-banking networks. According to Eisenberg and Noe (2001),

a financial institution in the network is said to bankrupt if it cannot payback any of its liabilities,

default if it can payback only a fraction of its liabilities and be solvent when it can fulfill its liabil-

ities. They show that the failure of a single institution can transmit to other financial institutions,

leading to a contagion risk. Particularly, they propose various linear and nonlinear optimization

models to measure the systemic risk in a financial network, and these optimization models vari-

ate in objective functions but do share the same set of constraints and the same unique optimal

solution. They also propose an algorithm to compute the clearing payment vector by tracking the

sequence of default.

In a series of papers, Elsinger et al. (2005, 2006), Elsinger (2009), Elsinger et al. (2013) study the

financial stability of a banking system considering the cascading impact of failures over the entire

network. In their model, the joint impact of two major sources of risk, the correlated exposure and

domino effects, is considered. Specifically, Elsinger et al. (2005, 2006) estimate the systemic risk in

the financial network in UK and Austrian based on data from banks in these two countries. Since

the data from banks usually reveals only partial information regarding the interbank liabilities and

the assets are subject to market fluctuation, Elsinger et al. (2005, 2006) suggest to first compute

the liability matrix by solving some entropy optimization problem based on the so-called Kullback-

Leibler (KL) divergence, and then use stochastic optimization and scenario generation to estimate

the worst-case scenario for the underlying linear optimization model.

There exist several works focusing on the impact of interbank liability structure on the risk

exposure. In their pioneering work, Allen and Gale (2000) first establish the connection between

the specific pattern of interbank lending and the extend of contagion in a financial system. Gia

and Kapadia (2010), Gia et al. (2011) discuss how contagion spreads in a random network, and

analyze the knock-on effects of distress. Battiston et al. (2012a,b) study the effect of credit risk

diversification and network density on systemic risk. Liu and Staum (2010) apply the standard

sensitivity analysis in Eisenberg-Noe’s LP model to estimate the impact of the market shock

to a single financial institution. Acemoglu et al. (2013) study the stability of financial networks

depending on the network structure and magnitude of negative shock to a single financial institution

in the network. Glasserman and Young (2015) study the contagion effects via network spillovers
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under certain assumptions on the shock distribution and network structure. The survey Elsinger et

al. (2013) summarizes various concepts and network optimization models and discuss their findings

and applications in systemic risk analysis up to that time. For more details in this direction,

we refer to Elsinger et al. (2013) and the references therein. Very recently, Chen et al. (2016)

explore the optimality conditions in Eisenberg-Noe’s linear optimization model to design a partition

algorithm that can separate the default institutions and the solvent ones in the network. They

also use sensitivity analysis to estimate the impact of both market and liquidity channel in risk

transmission.

In this paper we focus on the vulnerability analysis of the financial network based on the linear

optimization (LO) model introduced in Eisenberg and Noe (2001). Our work is inspired by a key

observation, as pointed out in the survey Elsinger et al. (2013), that most existing works have

underestimated the systemic risk in the financial system. In Elsinger et al. (2013), the authors

further speculate that the incomplete information on the financial network may be one major reason

for the underestimation of the risk. We notice that another possible reason for the underestimation

of the risk in a financial system is the restrictive small shock assumption widely used in the existing

literature. To see this, let us take a closer look at the reference Liu and Staum (2010) where the

authors estimate the contagious risk under two assumptions: One assumption is that the complete

information of a financial network is available and another assumption is that the market shock

will not change the set of default banks and the set of solvent banks. As shown in Liu and Staum

(2010), under these two assumptions, the contagious risk in the network can be estimated via

the solution to the dual problem of the LP problem in Eisenberg and Noe (2001). Note that the

assumption that the sets of default banks and solvent banks remain invariant implicitly implies

that the market shock is insignificant or small, which is very different from what happened during

the financial crisis in 2007-2008 when the large market shock had led to the bankruptcy of financial

institution such as Lehman Brothers. Clearly, the small shock assumption cannot be used in the

analysis of bankruptcy in a financial network. A challenge here is how to assess the systemic risk of

a financial network when only limited and incomplete information regarding the financial network

is available and the market shock is significant.

The primal goal of this work is to address the above challenge via developing a new theoretical

framework to analyze the vulnerability of a financial network under mild assumptions on mar-

ket shocks. To start, we mention that based on the LO model in Eisenberg and Noe (2001), the

bankruptcy in a financial network corresponds to the infeasibility of the model itself. For a given

linear optimization problem in which all the data are available, we can refer to the well-known

Farkas lemma to detect its feasibility(Vanderbei 2000). Unfortunately, for the LO model in Eisen-

berg and Noe (2001), as observed in Elsinger et al. (2013), Upper and Worms (2004), only limited
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information on the interbank liabilities such as the total liability and total claim of a financial insti-

tution is available while the asset of a financial institution is typically subject to market shock. In

other words, both the data matrix and the right hand side of the constraints in the underlying lin-

ear optimization model are uncertain. The presence of uncertainty in Eisenberg-Noe’s model poses

a tremendous challenge in estimating the contagious risk in the financial network and detecting

the model’s infeasibility.

Our first contribution in this work is to conduct a new extended sensitivity analysis to charac-

terize the (in)feasibility of the LO model in Eisenberg and Noe (2001). To achieve such a goal,

we propose to relax the LO model in Eisenberg and Noe (2001) by removing the non-negativity

constraints in it. Then, we explore various properties of the relaxed model. Particularly, we derive

a simple characterization for the feasibility of the relaxed model in terms of the summation of

all the assets in the network (the total asset). Under the assumption that only a single shock is

received by some bank in the network, we give a precise estimate on the amount of shock under

which the receiving bank will be bankrupted, default or solvent. We also assess the impact of the

single shock to all the non-receiving nodes in the system.

For the more generic scenario where all the banks are subject to market shocks, we first show

that while a larger total asset may not improve the stability of a financial network, a larger asset

inequality between a default node and a strictly solvent node in the network will reduce the stability

of the network itself. To the best of our knowledge, our result is the first quantitative analysis

showing that the asset inequality has a negative effect on the stability of the network. Then we

study the network with a monopoly node where the monopoly owns an asset equals the total asset

and dominates the entire network, representing an extreme scenario of the asset distribution. We

show that the least stable asset distribution can be attained at some network with a monopoly

node. We also estimate the probability of insolvency in the system under certain assumptions on

the market shock and network structure, and show that the network with a monopoly node has

the highest probability of insolvency and thus is the most vulnerable one. By using duality theory

in linear optimization and stochastic optimization, we derive lower bounds for the probability of

bankruptcy in the network. Particularly, we show that if the monopoly node in a financial network

is liability free, then the probability of bankruptcy in the system is larger than 50%.

We also estimate the impact of bankruptcy in a financial network with a monopoly node. We

first show that the bankruptcy of the monopoly node in a network will cause all other nodes in the

network to be bankrupted, a catastrophical disaster to the entire system due to the domino effect

of bankruptcy. In other words, the monopoly node is too big to fail (TBTF). We further explore

the domino effect of bankruptcy in a financial network under a tridiagonal structure. We show
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that even when the monopoly node in such a financial network is solvent, the bankruptcy of every

non-monopoly node in the network will cause other nodes following it to bankrupt consecutively.

The paper is organized as follows. In section 2, we first relax Eisenberg-Noe’s model and

explore various properties of the relaxation model. Then, we give a simple characterization on the

(in)feasibility of the relaxation model. In section 3, we consider a scenario of the network where

only a single node receives the shock. We first characterize different conditions under which the

receiving node is solvent, default or bankrupted. We also develop a new algorithm to estimate the

indirect impact of a single shock to the non-receiving nodes in the system. In section 4, we consider

a scenario where all the nodes are subject to market shocks. We first study the impact of asset

inequality on the stability of the system. Then, we estimate the probability that some bank in the

network will be insolvent or be bankrupted under assumptions on the market shocks and network

structure. In Section 5, we assess the impact of bankruptcy in a financial network with a monopoly

node. Finally we conclude the paper in Section 6 by discussing some future research directions.

2. A Relaxation Model and Its Properties

As pointed out in the introduction, though many optimization models were proposed to measure

the systemic risk of a financial network in Eisenberg and Noe (2001). To study the vulnerability of

the network, it suffices to investigate the linear optimization model. Consider a financial network

consisting of n banks denoted by n nodes where each bank borrows from one another and thus it

owes liabilities to others. A clearing agent is in charge of the process of settling the liabilities among

these nodes. The value of one node’s payment to settle its obligations depends on the payment of

other nodes to this node. Let L∈<n×n be the interbank liability matrix where lij is the liabilities

of node i toward node j. Since each nominal claim is nonnegative and no node has a nominal claim

against itself, therefore we have lij ≥ 0 and lii = 0, ∀i, j = 1, ..., n. Let α be the exogenous asset

vector that subjects to market shocks. The total liabilities of node i is equal to pi =
∑n

j=1 lij. In

Eisenberg-Noe’s model, the interbank payment made by node i to node j is xilij which can be

obtained by solving the following linear optimization problem:

max pTx (2.1)

s.t. (P −LT )x≤ α,

0≤ x≤ e,

where P =diag(p) and e is the all-ones vector. Note that numerous variants of model (2.1) have

been discussed in Chen et al. (2016), Elsinger et al. (2013), Liu and Staum (2010). As proved in

Eisenberg and Noe (2001) (see section 3.2 of Eisenberg and Noe (2001)), if all the coefficients in the

objective function in these variants of model (2.1) are positive, then all these variants of the model
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have the same unique optimal solution. Therefore, for convenience we analyze only model (2.1),

which has caught a lot of attention from various researchers in recent years and many results have

reported in the literature. As pointed out in the introduction, many existing results focus on how

the contagion risk spreads over the network when some bank in the network defaults, or when some

bank in the network receives a single shock. For more details, we refer to recent works (Acemoglu

et al. 2013, Capponi et al. 2016, Chen et al. 2016, Cont et al. 2010, Elsinger et al. 2005, 2006, 2013,

Glasserman and Young 2015, Liu and Staum 2010) and the references therein.

In this paper, we try to estimate the impact of the market shock when all the banks are subject

to market shocks from a certain distribution. We focus primarily on identifying conditions under

which some banks in the network will be bankrupted or default. For such a purpose, we first suggest

to remove the non-negativity constraint in (2.1), resulting in the following relaxation.

max
x

p̄Tx (2.2)

s.t. (P −LT )x≤ α;

x≤ e.

Since we do not require all the variables to be nonnegative in model (2.2), it is possible that at

the optimal solution of (2.2), there exists some index i satisfying x∗i < 0, which indicates that bank

i needs subsidies from other banks in the system to survive. In such a case, |pix∗i | represents the

total subsidy bank i received and |lijx∗i | represents the subsidy bank i received from bank j. Recall

that from a perspective of pure liability cleaning, the agent can also remove a bank i from the

network if the bank can not payback any of its liabilities. In such a case, the agent needs to solve

only problem (2.1) with a reduced network. In comparison, an agent using model (2.2) aims at

not only cleaning up the liabilities, but also helping the banks in crisis to survive with a minimal

amount of subsidy.

Our next result establishes the equivalence between two problems (2.1) and (2.2) under the

assumption that problem (2.1) is feasible.

Proposition 2.1. Let x(1) be the optimal solution of problem (2.1) and x(2) be the optimal

solution of the problem (2.2). Then we have

x(2) = x(1).

Proof. The proof of the proposition is a minor modification of the proof of Theorem 2.1 in

Pokutta et al. (2011). For self-completeness, we give the detailed proof here. Note that to prove

the above proposition, it suffices to show that x(2) ≥ 0. Let X1,X2 be the feasible set to problems

(2.1) and (2.2), respectively. Clearly both X1 and X2 are bounded and convex. Moreover, we have
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X1 ⊂ X2. Since problem (2.1) is feasible and thus, X1 is nonempty, it follows that X2 is also

nonempty. For the bounded nonempty set X2, let x̄ be the vector whose element x̄i, i= 1, · · · , n is

defined by

x̄i := sup
x∈X2

xi. (2.3)

It follows that for every i= 1, · · · , n, we have

x̄i := sup
x∈X2

xi ≥ sup
x∈X1

xi ≥ 0,

where the inequality follows from the fact X1 ⊂X2.

We next show that x̄ is the unique optimal solution of problem (2.2). For every i∈ {i= 1,2, ..., n},

there is xi ∈X2 such that xii = x̄i, thus

p̄ix̄i−
∑
j

ljix
i
j = p̄ix

i
i−
∑
j

ljix
i
j

holds. Because lji ≥ 0, we have

p̄ix̄i−
∑
j

ljix̄j ≤ p̄ix̄i−
∑
j

ljix
i
j,

and we can conclude by the fact xi ∈X2 that

p̄ix̄i−
∑
j

ljix̄j ≤ αi

i.e, x̄ is a feasible solution to problem (2.2). Clearly, x̄ maximizes
∑

i p̄ixi and therefore, x̄ is the

unique optimal solution to (2.2). This completes the proof of the proposition. �

As discussed in Eisenberg and Noe (2001), the optimal solution of problem (2.1) is a clearing

vector for the financial system that satisfies the so-called limited liability and absolute priority. By

following a similar process as in Eisenberg and Noe (2001), we can obtain the following result.

Corollary 2.1. At the optimal solution of problem (2.2), we have either

[(P −LT )x∗]i = αi or x
∗
i = 1, ∀i= 1, · · · , n.

From Propositions 2.1 and Corollary 2.1 we can see that there is no differences regarding the

properties of the optimal solutions to problems (2.1) and (2.2), and the optimal solution of prob-

lem (2.2) can also be used as a clearing vector for the financial system. However, as we shall see

in our later analysis, a key difference between problems (2.1) and (2.2) lies in the fact that a sim-

ple characterization of the (in)feasibility of problem (2.2) can be derived, which further facilitates

the feasibility analysis of model (2.1). Before stating our main result in this section, we need the

following definition
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Definition 2.1. Two nodes i and j in the financial network are said to be connected if there

exists a path i= i0→ i1→ · · ·→ iK−1→ iK = j such that

lik−1ik > 0, ∀k= 1, · · · ,K.

A financial network is said to be fully connected if every pair of nodes in the network is connected.

For convenience, we also say a financial network is well-balanced if the following relation holds.

p̄i = (LT e)i, ∀i= 1, · · · , n.

In the paper, we make the following assumption:

Assumption 2.1. The financial network is fully connected and well-balanced.

We remark that Assumption 2.1 is rather mild because if a well-balanced financial network is not

fully connected, then we can divide it into two independent subnetworks such that there exists

no connections between these two subnetworks. Correspondingly, we can solve two smaller linear

optimization problems to obtain the clearing vectors for these two independent systems.

We next present a technical result that will be used in the analysis later on.

Lemma 2.1. Suppose that the financial network is fully connected. Let λ∗ be a solution of the

following system of linear inequalities

(P −L)λ≤ 0, λ≥ 0. (2.4)

Then, it must hold λ∗ = ce for some c≥ 0.

Proof. Without loss of generality, we assume λ 6= 0. Let λi∗ = maxi=1,··· ,n λi, and define the

index set Ii∗ = {j 6= i∗ : li∗j > 0}. From the definition of p̄i∗, we have p̄i∗−
∑

j∈Ii∗
li∗j = 0. It follows

from (2.4) that

0≥ p̄i∗λi∗−
∑
j∈Ii∗

li∗jλj ≥ λi∗(p̄i∗−
∑
j∈Ii∗

li∗j) = 0. (2.5)

From (2.4) and (2.5) we can conclude

λj = λi∗ = max
i=1,··· ,n

λi, ∀j ∈ Ii∗.

Similarly, for every i∈ Ii∗ and the index set Ii = {j 6= i : lij > 0}, we have

λj = λi∗, ∀j ∈ Ii. (2.6)

Now let us choose arbitrary any index j∗. Recall that the network is fully connected. Let us first

consider a case where there exists a path i∗= i1→ i2 · · · → iK−1→ ik = j∗. By following a similar

vein as in the proof of (2.6), we can conclude λj∗ = λi∗. This completes the proof of the lemma. �
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Now we are ready to state the main result in this section.

Theorem 2.1. Suppose that Assumption 2.1 hold. Then problem (2.2) is infeasible if and only

if ∑
i

αi < 0. (2.7)

Proof. First, we note that the dual problem of (2.2) reads as

min
λ

αTλ+ eT p̄− eT (P −L)λ (2.8)

s.t. (P −L)λ≤ p̄;

λ≥ 0.

Using the Farkas Lemma, we see that problem (2.2) is infeasible if and only if the following linear

system is feasible. {
αTλ− eT (P −L)λ< 0;

(P −L)λ≤ 0, λ≥ 0.

}
(2.9)

It remains to show that the system (2.9) has a nontrivial solution if and only if (2.7) holds.

If eTα< 0, from the definition of liability matrix L we have (P −L)e= 0. This implies that for

any c > 0, ce is a feasible solution of the system (2.9), and therefore, problem (2.2) is infeasible.

On the other hand, suppose that the system (2.9) has a nontrivial feasible solution. From

Lemma 2.1 we can conclude that λ= ce for some c≥ 0. It follows from (2.9) that cαT e < 0, and

thus it must hold αT e < 0. This completes the proof of the theorem. �

Theorem 2.1 indicates that we can use the total asset as an indicator for the infeasibility of the

relaxed problem (2.2) and such an indicator is independent of the liability matrix. We next explore

the financial meaning of Theorem 2.1. For this, let us consider a scenario where the clearing agent

has a superpower to redistribute the assets of all the banks in the system. Under the assumption

that the total asset is fixed, the agent would like to use its power to maximize its revenue, leading

to the following two-stage linear optimization problem

max
α

max
x

p̄Tx (2.10)

s.t. (P̄ −LT )x≤ α;

x≤ e;∑
i

αi = ᾱ.

We have
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Proposition 2.2. If the total asset is non-negative (ᾱ≥ 0), then the optimal solution to prob-

lem (2.10) can be attained at some α∗ such that x∗i (α
∗) = 1, ∀i= 1, · · · , n.

Proof. We first consider the special case when all the nodes in the system are well-balanced. In

this case, we have (P̄ −LT )e= 0. This implies that for every asset vector α∗ satisfying α∗i ≥ 0, ∀i=

1, · · · , n, we have x∗(α∗) = e and thus, all the nodes in the system are solvent.

Next we consider the generic case
∑

i p̄i =
∑

i(L
T e)i. In this case, one can show that if we choose

the asset vector α∗ by α∗i = ᾱ/n+ p̄i − (LT e)i, ∀i = 1, · · · , n, then we still have x∗(α∗) = e. This

shows that all the nodes in the system are solvent.

From Theorem 2.1 and Proposition 2.2 we can conclude that the value of the total asset ᾱ

indicates whether we can redistribute the assets to make all the nodes in the network solvent or there

exists no ways to make all the nodes solvent. Since problem (2.2) is a relaxation of problem (2.1),

the condition ᾱ < 0 can also be viewed as a sufficient condition for the infeasibility of problem (2.1).

It is interesting to note that Theorem 2.1 holds true for the generic class of financial networks that

are fully connected, which shows that the vulnerability of the financial network may not depend

on the liability matrix L.

Our next theorem explore various properties at the optimal solution of problem (2.2).

Theorem 2.2. Suppose that the total asset of the financial network is nonnegative (ᾱ= αT e≥
0). Let x∗ be the optimal solution of problem (2.2). Then the following conclusions hold.

(i) There exists at least one index i such that x∗i = 1;

(ii) For every i= 1, · · · , n, if αi < p̄i− (LT e)i, then x∗i < 1;

(iii) For every i= 1, · · · , n, if x∗i = 1, then αi ≥ p̄i− (LT e)i;

Proof. We start with the proof of Conclusion (i). Let us first consider the case when ᾱ > 0.

Suppose to the contrary that Conclusion (i) does not hold, i.e., at the optimal solution x∗ of

problem (2.2), we have

x∗i < 1, ∀i= 1, · · · , n.

From Proposition 2.1, the following condition holds

(P −LT )x∗ = α.

Because eT (P −LT ) = 0, it follows that eTα= ᾱ= 0, which contradicts to the assumption ᾱ > 0.

To prove the conclusion when ᾱ= 0, let us define a new vector αε where

αε1 = α1 + ε, αεi = αi,∀i= 2, · · · , n.

It is easy to see that

eTαε = ᾱ+ ε > 0, ∀ ε > 0.
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Now let us consider a variant of problem (2.2) where α is replaced by αε and let us denote its

optimal solution by x∗(ε). Since eTαε > 0, there exists some index i such that x∗i (ε) = 1. Now let us

choose a sequence of εk→ 0. By restricting us to a subsequence if necessary, we can see that there

exists an index i such that x∗i (ε
k) = 1. Recall that problem (2.2) is a linear program, by using the

continuity of the solution sets for linear programs (Mangasarian and Shiau 1987), we have

x∗i = x∗i (0) = lim
k→∞

x∗i (ε
k) = 1.

This completes the proof of conclusion (i).

To prove the second conclusion, we note that at x∗, the following inequality

p̄ix
∗
i −
∑
j 6=i

ljix
∗
j ≤ αi, ∀ i= 1, · · · , n,

holds. Therefore, for every i= 1, · · · , n, we have

p̄ix
∗
i ≤ αi +

∑
j 6=i

ljix
∗
j ≤ αi +

∑
j 6=i

lji = αi + (LT e)i < p̄i, (2.11)

where the second inequality follows from the constraint x∗ ≤ e, and the last inequality from the

assumption αi < p̄i− (LT e)i. From (2.11) we immediately obtain

x∗i < 1.

The third conclusion follows directly from Conclusion (ii). This completes the proof of the

theorem. �

Conclusion (i) in Theorem 2.2 shows that when the total asset is non-negative, at least one bank

remains solvent in the system. Based on the second conclusion in Theorem 2.2, we can estimate

the upper bound for the asset value of bank i under which bank i will be insolvent in the system.

We note this upper bound can be obtained from the current market information.

We remark that though the results of Theorem 2.2 are established for problem (2.2), from

Proposition 2.1 one can easily see that these results also hold true for problem (2.1) when it is

feasible. We note that similar results like Conclusions (ii) and (iii) in Theorem 2.2 have been

obtained in Chen et al. (2016) where the authors used them to design an effective algorithm, and

estimate the impact of a single shock to the system based on the classical sensitivity analysis in

linear optimization and probability theory. In this paper, we shall use these results to estimate the

impact of market shocks on the financial network.

We next provide a numerical example to verify the theoretical results in this section.
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Table 1 An Example for the Relaxed Model of Financial Network.

Liability Matrix

Node 1 2 3 4 p̄ α1 α1′ α2

1 0 4857 9971 11306 26134 -6700 -6700.1 -9400

2 4857 0 10625 12047 27529 1790 1790 32790

3 9971 10625 0 24734 45330 740 740 -8100

4 11306 12047 24734 0 48087 4170 4170 12358.2

Claims 26134 27529 45330 48087 147080 0 -0.1 27648.2

Optimal Solution
x∗1 x∗2 x∗3 x∗4

0.7269 1 0.9562 1 α1

infeasible - - - α1′
1 =−6700.1

.5329 1 0.7186 1 α2
1− =−9400

-1.2097 1 -0.1232 0.1597 α2
1+ =−37048.2

Example 2.1. We consider a complete financial network with four banks in which the total

asset equals zero (ᾱ = eTα = 0). The liability matrix is extracted from the liability matrix (see

Table 6 in Chen et al. (2016)) by considering the first four banks in the network. The asset vector

and the optimal solution are also listed below.

We point out that all the linear optimization problems in the numerical experiments of this work

are solved by using CVX Grant and Boyd (2013) under MATLAB R2015b. In Example 2.1, we

first consider an asset vector α1 satisfying ᾱ1 = 0. Note that the network is well-balanced. From

Table 1 one can see that both nodes 2 and 4 can fulfill their liabilities while nodes 1 and 3 default.

This is consistent with the conclusions in Theorem 2.2. Based on the optimal solution, we see that

even bank 1 can payback more than 70% of its liability and thus it is not easy to determine whether

there exists a high risk of bankruptcy in the system. However, because ᾱ1 = 0, from Theorem 2.1 we

can conclude that if some bank i in the network receives a negative shock, then both problems (2.1)

and (2.2) will become infeasible, indicating a high potential risk of bankruptcy in the system. To

verify such a result, we reduce the value of α1 slightly to α1′
1 =−7600.1 and thus ᾱ1′ < 0. As one

can see from the table, problem (2.2) becomes infeasible.

We also consider problem (2.2) with another asset vector α2 satisfying ᾱ2 > 0. By reducing the

value of α2
1− to α2

1+ = −37048.2, we obtain a new total asset value 0, and thus, problem (2.2)

remains feasible. We observe that at the optimal solutions, we have x2
1 < 0 and x2

3 < 0, which

indicates both banks 2 and 3 need to be subsidized to survive. By checking the optimal solutions

again, we can also find that because of the change in α2
1, the solvent node (4) has changed to a
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default one ( x∗4(α2
1−) = 1 and x∗4(α2

1+) = 0.1597< 1). This demonstrates that in such a case, the

small shock assumption widely used in the literature of systemic risk analysis does not hold.

3. The Vulnerability of A Financial Network under A Single Shock

In this section, we consider a scenario where only a single node receives the market shock and

study the impact of the shock on the whole system. The section consists of two subsections. In

the first subsection, we estimate the direct impact of the shock on the receiving node, and in the

second subsection we study the indirect impact of the shock on other nodes in the system.

3.1. The impact of a single shock on the receiving node

In this subsection, we consider a scenario where only a single node receives the market shock and

present a deterministic characterization on conditions under which the receiving node (i) will be

solvent, default or bankrupted. For such a purpose, we consider the following modified variant of

problem (2.2)

max
n∑
i=1

p̄ixi (3.1)

s.t. (P̄ −LT )x≤ α+ s;

x≤ e,

where s has only a single nonzero element si 6= 0 at some index i. We can interpret s as the influence

of the market shock on bank i. Our purpose is to characterize the behavior of the optimal solution

x∗(s) of problem (3.1) in terms of s. Particularly, we are mainly interested in conditions under

which the i-th element x∗i (s) at the optimal solution will satisfy one of the following conditions:

x∗i (s)≤ 0; (3.2)

x∗i (s)∈ (0,1); (3.3)

x∗i (s) = 1. (3.4)

Note that the above conditions are associated with the status of the bank i depending on whether

it is bankrupted, default, or solvent. We also call node i insolvent when x∗i (s)< 1. Next, we first

present a technical result.

Lemma 3.1. Suppose that x∗(s) be the optimal solution of problem (3.1) where s has only a

single nonzero element si 6= 0 for some i. Then the following conclusions hold.

(i) For every index j ∈ {1, · · · , n}, x∗j (s) is nondecreasing in terms of si;

(ii) For index i, x∗i (s) is locally strictly increasing in terms of si if x∗i (s)< 1;
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Proof. We start with the proof of Conclusion (i). Let x∗(s1) and x∗(s2) denote the optimal

solutions of problem (3.1) corresponding to s1 and s2 respectively, where s1
i < s

2
i . We want to show

that x∗j (s
1)≤ x∗j (s2) for every index j ∈ {1, · · · , n}. Assume to the contrary that there is an index

k such that x∗k(s
1)>x∗k(s

2). Since we assume that s1 < s2, it follows that

X1
s ⊆X2

s , (3.5)

where X1
s and X2

s are the feasible sets corresponding to s1 and s2 respectively. According to the

proof of Proposition 2.1, for every index i, we have

x∗i (s) = sup
x∈Xs

xi. (3.6)

where Xs is the feasible set of problem (3.1). From (3.5) and (3.6) we can conclude that x∗k(s
1)≤

x∗k(s
2) which contradicts the assumption and finishes the proof of the first conclusion.

To prove the second conclusion it suffices to show that for s1
i < s2

i , x
∗
i (s

1) 6= x∗i (s
2). Suppose to

the contrary that x∗i (s
1) = x∗i (s

2). Now let us define the index sets

I1 = {i : p̄ix
∗
i −
∑
j 6=i

ljix
∗
j = (α+ s)i}, I2 = {i : x∗i = 1}.

From Proposition 2.1, we can conclude that x∗ is the unique solution of the following linear equation

system

p̄ix
∗
i −
∑
j 6=i

ljix
∗
j = (α+ s)i, ∀i∈ I1; (3.7)

x∗i = 1, ∀i∈ I2. (3.8)

Let us denote the coefficient matrix in the above system by A. Clearly A is a so-called M -matrix.

On the other hand, since I2 is nonempty by Theorem 2.2, under the assumption that the financial

network is fully connected, one can show that A is nonsingular. Since we assume that x∗i (s)< 1,

we have

x∗(si) =A−1α+ siA
−1
:i ,

where A−1
:i is the i-th column of A−1. Note that the inverse matrix of an M -matrix is nonnegative

(see Berman and Plemmons (1979)). Using the fact that Aii is the only positive element in the

i-th row of A and A−1 is nonnegative, we can conclude A−1
ii > 0. This implies that for s1

i < s2
i ,

x∗i (s
1)<x∗i (s

2) which contradicts to the assumption. This completes the proof of the lemma. �

Now we are ready to state the main result in this section.
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Theorem 3.1. Let x∗(s) be the optimal solution of problem (3.1). Then, x∗i (s)< 0 if and only

if

si <max(−ᾱ,∆i−αi), (3.9)

where

∆i =−max
∑
j 6=i

ljixj (3.10)

s.t. p̄jxj −
∑

k 6=j,k 6=i

lkjxk ≤ αj, ∀j 6= i;

xj ≤ 1, ∀j 6= i.

Proof. For simplicity, we consider only the special case s1 6= 0. To prove the sufficiency of the

theorem, we consider the following two cases: Case (i): s1 <−ᾱ. Case (ii): −ᾱ≤ s1 <∆1−α1. In

the first case, we have

eTα+ s1 < 0.

It follows from Theorem 2.1 that problem (3.1) is infeasible which implies that problem (2.1) is

also infeasible.

Now we consider case (ii) where −ᾱ≤ s1 <∆1−α1. In such a case, we have ᾱ+ s1 ≥ 0 and thus

the relaxed problem (3.1) is feasible. It remains to show that x∗1 < 0 at the optimal solution x∗ of

problem (3.1). Let us consider the following specific variant of problem (3.1)

max
n∑
i=1

p̄ixi (3.11)

s.t. p̄1x1−
∑
j 6=1

lj1xj ≤∆1;

p̄ixi−
∑
j 6=i

ljixj ≤ αi, ∀i= 2, · · · , n;

x≤ e.

One can verify that the above problem and problem (3.10) have the same optimal solution, which

further implies x∗1(s1) = 0 when s1 = ∆1 −α1. According to Conclusion (ii) in Lemma 3.1 we can

conclude that x∗1(s1) is locally strictly increasing in terms of s1. Therefore, we have x∗1(s1) < 0

whenever s1 <∆1−α1. This proves the sufficiency of the theorem.

Now we consider the necessity of the theorem. It suffices to consider the case where problem (3.1)

is feasible and x∗1(s1)< 0. Suppose to the contrary that the relation (3.9) does not hold, i.e.,

s1 ≥max(−ᾱ,∆1−α1). (3.12)
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The above relation indicates

s1 + ᾱ≥ 0, s1 +α1 ≥∆1. (3.13)

Recall x∗1(∆1−α1) = 0, from Lemma 3.1 we immediately obtain

x∗1(s1)≥ 0,

which contradicts to the assumption. This completes the proof of the theorem. �

We remark that |∆i| represents the maximum amount of repayments that bank i received from

other banks in the system under the condition that bank i does not make any payment to other

banks in the system, i.e., x∗i = 0. Theorem 3.1 provides an estimate on the amount of negative shock

that a financial institution can survive bankruptcy under the condition that only the corresponding

institution is affected by the shock. We also mention that the estimated amount of negative shock in

Theorem 3.1 depends only on the current market information, not on the future market fluctuation.

Such a result allows the financial institution to estimate the worst-case scenario it can survive

under the current market conditions on the assets and interbank liabilities, which may help the

financial institution in its decision making to hedge future risk.

We next present a numerical example to verify the theoretical conclusions of Theorem 3.1.

Example 3.1. Consider a network of four financial institutions where the liability matrix is

the same as in Example 2.1. The asset vector α= (−9400,32790,−8100,12358.2)T with ᾱ= eTα=

27648.2> 0.

Table 2 Bankruptcy Example in Financial Network

Optimal Solution

x∗1 x∗2 x∗3 x∗4

0.0001 1 0.46 0.75 α1 =−17893

0 1 0.46 0.75 α1 = ∆1 =−17894.736

-0.0001 1 0.46 0.75 α1 =−17896

For the above example, we estimate the maximum amount of negative shock (s) via (3.9) that a

node in the network can sustain to survive, where ∆ is obtained by solving problem (3.10). The

results are shown in the following table.

Table 3 ∆ and s estimated for Example 3.1

Node ∆ s

1 -17894.736 -8494.736

2 5141.80 -27648.20

3 -23981.652 -15881.652

4 -10635.42 -22993.62
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For example, based on Table 3, it holds s1 = −8494.736. From Theorem 3.1, we can conclude

that if s1 <−8494.736, then at the optimal solution we have x∗1 < 0. To verify that, we consider

three different shocks with s1 =−8493>−8494.736, s1 =−8494.736, and s1 =−8496<−8494.736,

respectively. Correspondingly we obtain three different values for asset (α1) as listed in Table 2.

As one can see from Table 2, in all these cases, we have ᾱ > 0 and thus, problem (2.2) is feasible.

However, we note that when s1 =−8496 ( or equivalently α1 =−17896), it holds x∗1 =−0.0001< 0,

which indicates problem (2.1) is infeasible.

We next compare Theorem 3.1 with the results in Liu and Staum (2010) where they used standard

sensitivity analysis to estimate the impact on the payments with respect to some changes in the

asset vector (called the partial derivative of the repayments with respect to the assets). As shown in

Eisenberg and Noe (2001), problem (2.1) can be solved via solving n decomposed problems where

the objective is to maximize the payment for every node i subject to the same constraint set as

in the original problem (2.1) 1. Therefore, the partial derivatives of the repayments with respect

to the assets are precisely the shadow prices for the decomposed problems. The matrix of shadow

prices computed in Liu and Staum (2010) is given as follows

∂p∗

∂α
≈

1.09 0 0.41 0
0 0 0 0

0.24 0 1.09 0
0 0 0 0

 ,
where p∗i = x∗i ∗ p̄i. For example, based on the above estimate, we have that

∂p∗1
∂α1
≈ 1.09 indicating

that a decrease of $1 in asset value of the first node cause the payment made by that node to drop

approximately $1.09. Unfortunately, such a result remains valid only for small shocks under which

both the set of default nodes and the set of solvent nodes remain invariant, and the result will not

hold any more for reasonably large shocks that may cause a solvent node to become a default one.

Take for example, for the solvent node 4, we have
∂p∗4
∂α4
≈ 0 whenever the node remains solvent. This

illustrates that the results in Liu and Staum (2010) cannot be used to predict when a node will

become bankrupted as a large negative shock to the asset vector may change the sets of default

and solvent nodes. In contrast, Theorem 3.1 shows that if node 4 receives a large negative shock

s4 =−22993.62, then node 4 will be bankrupted.

In what follows we study the solvency of a financial institution in the system, i.e., to characterize

when x∗i (s) = 1 for a given index i.

Theorem 3.2. Suppose that x∗(s) be the optimal solution of problem (3.1). Then we have

x∗i (s) = 1 if and only if

si ≥ p̄i + Γi−αi. (3.14)
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where

Γi =−max
∑
j 6=i

ljixj (3.15)

s.t. p̄jxj −
∑

k 6=j,k 6=i

lkjxk ≤ αj + lij, ∀j 6= i;

xj ≤ 1, ∀j 6= i.

Proof. Let us consider only the special case s1 6= 0. To prove the sufficiency of the theorem, we

assume that condition (3.14) holds. Since s1 = p̄1 +Γ1−α1, we can rewrite problem (3.1) as follows

max
n∑
i=1

p̄ixi (3.16)

s.t. p̄1x1−
∑
j 6=1

lj1xj ≤ p̄1 + Γ1;

p̄ixi−
∑
j 6=i

ljixj ≤ αi, ∀i= 2, · · · , n;

x≤ e.

One can easily verify that problem (3.16) and (3.15) have the same optimal solution, which implies

that we have x∗1(s1) = 1 if s1 = p̄1 +Γ1−α1. From Conclusion (i) of Lemma 3.1 we know that x∗(s1)

is nondecreasing in terms of s1. Therefore, we have x∗1(s1) = 1 for s1 ≥ p̄1 + Γ1 − α1. This proves

the sufficiency of theorem.

Now we consider the necessity of the theorem. Suppose that x∗1(s1) = 1. Suppose to the contrary

that inequality (3.14) does not hold, i.e.,

s1 < p̄1 + Γ1−α1.

From the constraints of problem (3.1) we obtain

p̄i−
∑
j 6=i

ljix
∗
j = p̄ix

∗
i −
∑
j 6=i

ljix
∗
j ≤ αi + si, (3.17)

where the equality follows from the assumption that x∗i (si) = 1. Therefore, we have

si ≥ p̄i + Γi−αi,

which contradicts to the assumption. This finishes the proof of the theorem. �

We remark that |Γi| denotes the maximum amount of repayments that a solvent bank i received

from other banks in the system. Theorem 3.2 provides an estimate on the minimum amount of

positive shock or market gain for a default bank to become solvent. We mention that the estimated

positive shock in Theorem 3.2 depends on the current asset value and interbank liabilities. This
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allows the banks to estimate the asset increment (such as the exogenous investment or profit gain)

they need to become solvent. Theorem 3.2 also provides an estimate on the maximum amount of

negative shock that a solvent node can sustain to remain solvent. The results in Theorem 3.2 may

help banks in their decision making regarding their investment in the market. We also point out

that the results in Theorem 3.2 are very different from the results in Liu and Staum (2010) based

on standard sensitivity analysis in linear optimization.

We next use the same financial network as in Example 3.1 to verify the conclusions in Theo-

rem 3.2.

Example 3.2. L and α are the same as in Example 3.1.

Table 4 Solvency Example in Financial Network

Optimal Solution

x∗1 x∗2 x∗3 x∗4

0.99 1 0.82 1 α1 = 1780

1 1 0.82 1 α1 = Γ1 + p̄1 = 1781.714

1 1 0.82 1 α1 = 1782

0.53 1 0.71 1 α2 = 5258.652

0.53 0.99 0.71 1 α2 = 5257

Table 5 Γ and s estimated for Example 3.2

Node Γ s

1 -24352.286 11181.714

2 -22270.348 -27531.348

3 -41743.584 11686.416

4 -35845.652 -116.852

In the above example, Γ is computed by solving problem (3.15). For this example, if a default node

in the system, i.e., node 1, can manage to increase its asset, then its repayment ability will be

improved. In the case that the increment of asset value reaches the target value (s1 = 11181.714),

then node 1 becomes solvent. To verify such a result, we consider three different shocks with s1 =

11180 < 11181.714, s1 = 11181.714, and s1 = 11182 > 11181.714, receptively. The corresponding

values of the asset α1 are listed in Table 4. As one can see from Table 4 that when α1 ≥ 1781.714,

it holds x∗1 = 1 at the optimal solution.

We also estimate the maximal amount of negative shock that a solvent node in the system can

sustain to keep its solvency. Let us consider the solvent node 2 in the above example. Based on
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Table 5, we have s2 = −27531.348. From Theorem 3.2 we can conclude that if s2 ≥ −27531.348,

we have x∗2 = 1. To verify such a result, we consider two shocks s2 =−27531.348 and s2 =−27532

respectively, and the corresponding asset values α2 = 32790 − 27531.348 = 5258.652 and α2 =

32790− 27533 = 5257. As one can see from Table 4, it holds x∗2 = 1 when s2 = −27531.348, and

x∗2 < 1 when s2 =−27533.

It is also interesting to note that standard sensitivity analysis for linear optimization problem can

also be used in some special case in Theorem 3.2. Take for example, using the standard sensitivity

analysis as in Liu and Staum (2010), we have
∂p∗1
∂α1
≈ 1.09 (see discussion in Example 3.1). This

shows that when α1 is increased by 11182.7158, the first node can repay all its liabilities. We note

that in such a case, it holds

[(P −LT )x∗]1 = α1, x∗1 = 1.

The above example represents a borderline case where node 1 changes from a default node to a

solvent one. In other words, the sets of the default and solvent nodes did not change before α1

reaches the value 11182.7158. Therefore, the estimate based on the standard analysis is similar

to what we obtained from Theorem 3.2. For solvent nodes 2 and 4, from the standard sensitivity

analysis we have
∂p∗2
∂α2
≈ 0 and

∂p∗4
∂α4
≈ 0, which implies that the asset value of those nodes does not

have any impact on their repayment ability. In contrast, Theorem 3.2 shows that if α2 < 5258.651,

then node 2 will default.

Theorems 3.1 and 3.2 provide an upper bound and a lower bound of the magnitude of shock

si such that bank (i) is bankrupted or solvent. Combining the results in these two theorems, we

immediately obtain the following result.

Corollary 3.1. If

si ∈ (max(−ᾱ,∆i−αi), p̄i + Γi−αi), (3.18)

then the relation 0<x∗i (si)< 1 holds at the optimal solution x∗(si) of problem (3.1).

We call interval (3.18) as the default window. The default window can be used as an indicator for

the resistance of a default bank i to market shock. The larger the window is, more resistant to

market shock the bank is. It worths estimate the length of the default window. Since ∆i and Γi

are obtained by solving problems (3.10) and (3.15) respectively, we have

Γi ≤∆i.

It follows that

p̄i + Γi−αi−max(−ᾱ,∆i−αi)≤ p̄i + Γi−∆i ≤ p̄i.

In other words, the maximal magnitude of shock that a default bank i can resist is bounded above

by its total liability.
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3.2. The indirect impact of the shock on other nodes in the system

In this subsection, we study the impact of a single shock to other nodes in the system. To start, we

point out that Chen et al. (2016) and Glasserman and Young (2015) study the contagion impact of

a single shock on other non-receiving nodes in the system. Different from the results in these two

papers, we will estimate the magnitude of a single shock under which some non-receiving node will

be bankrupted. For simplicity of discussion, throughout this subsection we assume that the first

node is the receiving node with shock s1. In such a case, we can consider the decomposed problem

as follows

max xj (3.19)

s.t. p̄1x1−
∑
j 6=1

lj1xj ≤ α1 + s1;

p̄ixi−
∑
j 6=i

ljixj ≤ αi, ∀i= 2, · · · , n;

x≤ e.

Particularly, we are mainly interested in estimating the minimum amount (denoted by s̄1j) of s1

such that bank j become bankrupted, i.e.,

s̄1j := arg maxx
(j)
j (s1) = 0, (3.20)

where x
(j)
j (s1) denotes the objective function value at the optimal solution of problem (3.19). One

can easily see that s̄11 = max{−ᾱ,∆1−α1}. Let us define

s̄max1 = max
j=1,··· ,n.

s̄1j.

The following result follows directly from the above definition.

Proposition 3.1. Suppose the system is triggered by a single shock s1. If s1 < s̄
max
1 , then some

node in the system will be bankrupted.

In what follows we consider the issue of how to estimate s̄max1 . Let us start by considering the

issue of which node is more sustainable under the single shock s1. For this, we introduce the

following definition.

Definition 3.1. Let s̄1j be defined by (3.20). We say a node i is more sustainable than another

node j under the single shock s1 if s̄1i ≤ s̄1j.

We next present a result on how to determine whether one node in the system is more sustainable

than the receiving node itself . We have

Theorem 3.3. Let x∗(s1) be the optimal solution of problem (3.10) with i= 1. For every j > 1,

we have
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(i) If x∗j (s1)> 0, then node j is more sustainable than the receiving node 1;

(ii) If x∗j (s1)≤ 0, then node j is less sustainable than the receiving node;

(iii) If x∗j (s1)> 0,∀j > 1, then s̄max1 = s̄11.

Proof. Based on Conclusion (i) in Lemma 3.1, we can claim that x∗j (s1) is nondecreasing in

terms of s1. By following a similar vein as in the proof of Proposition 2.1, we can show that

x∗j (s1) := sup
x(s1)∈X(s1)

xj(s1), ∀j = 2, · · · , n,

where X(s1) is the feasible set of problem (3.10). Since problem (3.10) and (3.19) have the same

feasible set, x∗(s1) is a feasible solution of (3.19). Clearly, x∗(s1) maximizes xj and therefore, x∗(s1)

is the unique optimal solution to (3.19). This implies that the optimal solution of problem (3.10)

can be obtained by solving n−1 decomposed problem in the form of problem (3.19). Now, because

x
(j)
j (s̄1j)> 0, ∀j > 1,

from (3.20) it follows

s̄1j ≤ s̄11.

This proves the first conclusion in the theorem. The second conclusion follows similarly. We consider

that x∗j (s1)≤ 0 which implies that

x
(j)
j (s̄1j)≤ 0, ∀j > 1.

Based on (3.20) we have

s̄1j ≥ s̄11.

This proves the second conclusion in the theorem. The last conclusion follows directly from the

definition of s̄max1 . This completes the proof of the theorem. �

Theorem 3.3 provides a simple way to determine whether a non-receiving node in the system is

more sustainable than the receiving node itself by solving problem (3.10). Note that when α> 0,

one can show that at the optimal solution x∗(s1) of problem (3.10), we have x∗j > 0 for all j > 1. It

follows from Theorem 3.3 that

Corollary 3.2. Suppose a system is triggered by a single shock. If all the nodes in the system

have positive assets, then every non-receiving node in the system is more sustainable than the

receiving node itself.

The above corollary shows that for problem (2.1), if the initial asset vector α is positive, and only

α1 is subject to the shock s1, then node 1 will be bankrupted first. Corollary 3.2 also implies that
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if the system is triggered by multiple shocks such that only one node receive a negative shock, then

the node receiving the negative shock will become bankrupt first.

We next discuss how to estimate s̄max1 when there exists some non-receiving node j > 1 that is

less sustainable than the receiving node 1. For this, we recall conclusion (i) of Lemma 3.1, which

shows that x∗j (s1) is nondecreasing in terms of s1. One way to locate s1j is applying a line search

procedure based on the monotonicity of x∗j (s1). Let us assume that problem (2.1) is feasible and

thus, we can obtain an upper bound us = 0 for s1j. From Theorem 2.1, we can also obtain a lower

bound ls =−ᾱ for s1j. We are now ready to describe a bisection search algorithm for locating s1j.

A Bisection Search Algorithm

S.0 Input: L, p̄, α, ls =−ᾱ, us = 0, and a stop criteria ε;

S.1 While u− l > ε Do;

S.1.1 s1 := ls+us
2

;

S.1.2 Solve problem (3.19);

S.1.3 If x∗j (s1)> 0, then

S.1.4 Set u= s1,

S.1.5 else

S.1.6 Set l= s1,

S.1.7 endif

S.2 Output: s1j = s1

For illustration, we use the same financial network as in Example 3.1 and adapt the bisection

search algorithm to estimate s̄ij.

Example 3.3. L and α are the same as in example 3.1.

Table 6 Bankruptcy Example in Financial Network

Optimal Solution

x∗1 x∗2 x∗3 x∗4

0.5329 1 0.7186 1 α1 =−9400

0 1 0.4624 0.7454 α1+ = ∆1 =−17894.736

-0.9551 1 0 0.2830 α1− = α1− s̄13 =−33017.514

0 1 0.1856 0.2381 α4− = α4− s̄41 =−5187.8

For the above example, we first estimate ∆i,∀i= 1, · · · ,4 by solving problem (3.10) which is also

shown in Table 3. We also use the bisection search algorithm to estimate s̄ij,∀i, j = 1, · · · ,4, as

listed in the following table.
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Table 7 sij estimated for Example 3.3

Node s̄1j s̄2j s̄3j s̄4j

1 -8494.736 -27648.2 -17546.0 -17546

2 -27648.2 -27648.2 -27648.2 -27648.2

3 -23617.514 -27648.2 -15881.652 -23617

4 -27648.2 -27648.2 -27648.2 -22993.62

From Table 6, one can see that under a single shock s1, the receiving node 1 is the least sustainable

node and bankrupts first, while node 2 remains solvent as well as problem (2.1) is feasible. When

the amount of the negative shock |s1| is sufficiently large such that s1 ≤ s̄13, then both nodes 1

node 3 become bankrupted.

From Table 7, we can see that if the single shock is received by either node 1 or 3, then the

receiving node is the least sustainable node. However, when node 4 is the receiving node, then

node 1 is the least sustainable node in the system. To verify this, we consider a negative shock

s4 = s̄41 = −17546. As one can see from Table 6, node 1 becomes bankrupted under the shock

s4 =−17546 while node 4 survives.

4. The Vulnerability of A Financial Network under Multiple Shocks

In this section, we estimate the vulnerability of a financial network in a generic scenario where

all the nodes are subject to market shocks. The section consists of three subsections. In the first

subsection, we estimate the impact of asset inequality on the stability of the network, and show

that, the least stable financial network can be attained at some network with a monopoly node.

Then, we characterize conditions for bankruptcy in a financial network with a monopoly node. In

the second and third subsections, we estimate the probabilities of insolvency and bankruptcy in

the network respectively.

4.1. Asset inequality and stability of the financial system

In this subsection we estimate the vulnerability in a financial system when all the nodes are

exposed to market shocks. First we point out that, as proved in Lemma 3.1, the solution x∗(s) of

problem (3.1) is component-wise monotone with respect to the market shock when only a single

bank receives the shock. In such a case, we can conclude that x∗(s) is also monotone in terms of total

asset (ᾱ), i.e., the financial network will be more stable as the total asset increases. Such a result

has also been used in Glasserman and Young (2015) to estimate the probability of insolvency in

the network caused by the shock to a single node (i). It is of interests to see whether the monotone

relationship between the repayments and the shocks still holds when all the nodes receive shocks.

For this, we introduce the following definitions.
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Definition 4.1. A node (i) in the financial system is said to be strictly solvent node if

x∗i = 1, [(P −LT )x∗]i <αi

where, x∗i is the optimal solution of (2.1) or (2.2). Correspondingly the gap between the assets

of one strictly solvent node and some default/bankrupted node in the system is called an asset

inequality.

In this paper, we propose to measure the stability of a financial system in terms of the optimal

objective value of problem (2.1). Based on this new measurement of stability, we can compare the

stability of two financial systems with the same liabilities and different assets.

Definition 4.2. Consider two financial systems with the same network structure L with asset

vectors α1 and α2 satisfying eTα1 = eTα2 = ᾱ. The first system is said to be less stable than the

second one if

p̄Tx∗(α1)< p̄Tx∗(α2),

where x∗(α1) and x∗(α2) denote the optimal solution of (2.1) with α= α1 and α= α2, respectively.

We remind the readers that the measurement of stability in our work is different from what used

in the reference Acemoglu et al. (2013) where the authors suggested to use the number of nodes

affected by the shock to measure the stability of the system.

Now let consider a financial network with total asset ᾱ1 where problem (2.1) is feasible and

there exists some default bank, and strictly solvent node. Without loss of generality, let us further

assume that bank 1 defaults, i.e., at the optimal solution x∗ of problem (2.2), we have 0<x∗1 < 1,

and bank n is strictly solvent, i.e., x∗n = 1, [(P −LT )x∗]n <αn. Now let us consider a new financial

system with total asset ᾱ2 = ᾱ1 such that α2
1 = α1

1 − ε and α2
n = α1

n + ε. Since x∗n(α1) = 1, it holds

x∗n(α2) = 1. It follows from Lemma 3.1 that

x∗1(α2)<x∗1(α1), x∗i (α
2)≤ x∗i (α1),∀i= 2, · · · , n.

From the above discussion we immediately obtain the following result.

Proposition 4.1. Suppose that the summation of the assets of one default node and another

strictly solvent node in a financial network remain invariant. A larger asset inequality between

these two nodes will decrease the stability of the network.

We remark that since increasing the asset value αn will not help to improve the stability of the

underlying network, this implies that an increase in the total asset may not improve the stability

of the network. The following example demonstrates such an phenomenon.
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Example 4.1. We consider the same data matrix as in Example 2.1 with three different vectors

of asset

α1 = (−400,3790,100,1358.2)T , α2 = (−500,4000,100,1358.2)T ,

α3 = (−1000,4000,100,3358.2)T

such that at least one of the nodes in the system defaults.

Table 8 Stability of a Financial System VS Asset Inequality.

Optimal Solution

x∗1 x∗2 x∗3 x∗4

0.9842 1 0.9987 1 α1

0.980 1 0.9978 1 α2

0.959 1 0.9932 1 α3

In the above example, we change the value of α1 such that the asset value of the first node is

decreased while the asset values of all other nodes are increased and thus, the total asset is increased

as well. As you can see from Table 8, we have

x∗1(α1)>x∗2(α2)>x∗3(α3), ᾱ1 < ᾱ2 < ᾱ3.

The example shows clearly that an increase in the total asset may not improve the stability of

the financial network. With a close look at the example, we find that the asset inequality has also

increased as the total asset grows. This illustrates that the asset inequality in the financial network

has a negative effect on the stability of the network. Next we study the stability of a network with

a dominant node, which represents an extreme distribution of the assets defined as follows.

Definition 4.3. A node i in a financial network is said to be a monopoly node if

αi = ᾱ, αj = 0, ∀j = 1, · · · , i− 1, i+ 1, · · · , n, (4.1)

We next show that under the assumption that total asset is fixed, the network is the least stable

one when it has a monopoly node. To start, let us consider the following problem

min
α

max
x

p̄Tx (4.2)

s.t. (P̄ −LT )x≤ α;

x≤ e;∑
i

αi = ᾱ;

α≥ 0.
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For a given α, let f(α) denote the objective function value of problem (2.2). Then we can rewrite

the above problem as the following

min
α

f(α) (4.3)

s.t.
∑
i

αi = ᾱ;

α≥ 0.

Note that by using the duality theorem for linear optimization, we have

f(α) := min
λ

αTλ+ eT p̄− eT (P −L)λ

s.t. (P −L)λ≤ p̄

λ≥ 0

From the above definition, one can see that f(α) is concave with respect to α. Therefore, the

optimal solution of (4.3) can be obtained in one of the extreme points of the constrained set, which

is precisely a network with a monopoly node. From this, we immediately have the following result.

Proposition 4.2. Suppose that the total asset is fixed. The least stable financial network can

be attained at some network with a monopoly node. Moreover, if the monopoly node in a network

is strictly solvent and there exists some default node in the system, then the stability of network

can be improved by redistributing the assets in the network.

Proof. We need only to prove the second conclusion of the proposition. Let assume that the

first node is the monopoly node that is strictly solvent. Thus, we have

x
(1)
1 = 1, [(P −LT )x(1)]1 <α1.

In this case, there exist at least one default node i > 1 in the system such that

x
(1)
i < 1.

Now if we slightly increase α1
i to α2

i = α1
i + ε and decrease α1

1 to α2
1 = α1

1 − ε such that [(P −
LT )x(1)]1 ≤ α1

1− ε, we can conclude that

x(2) >x(1),

where x(1) and x(2) are the optimal solutions of (2.1) when α= α1 and α= α2 respectively. Note

that the above inequality follows from conclusion (ii) in Lemma 3.1 which states that x
(1)
i (si) is

strictly increasing in terms of si. This finishes the proof of the proposition. �

Proposition 4.2 shows that the worst-case scenario for problem (2.1) w.r.t. the asset distribution

is the network with a monopoly node.



Authors’ names blinded for peer review
28 Article submitted to Management Science; manuscript no. MS-16-00273.R3

4.2. Probability analysis on the vulnerability of a financial network

In this subsection we explore the vulnerability of a network with a monopoly node when all the

nodes receive shocks under certain assumption of the shock distribution. First, we recall that, as

illustrated by Example 4.1, the monotonicity between the repayments (x∗(s)) and the shocks (s)

does not hold in general if all the nodes receive shocks. Fortunately, as shown in Conclusion (ii)

of Theorem 2.2, a node i is insolvent if αi ≤ p̄i − (LT e)i. Since the total liability of a financial

institution p̄i and its total claims (LT e)i are usually known in advance, this allows us to estimate

the probability of insolvency in the financial network under the following assumption.

Assumption 4.1. (i) The financial network is well-balanced and the assets are nonnegative;

(ii) All the shocks follow the same independent normal distribution with a zero mean and vari-

ance σ2, i.e., si ∼N (0, σ2).

We have

Theorem 4.1. Suppose that Assumption 4.1 holds. For a fixed total asset (ᾱ), the following

conclusions hold.

(i) The network with a monopoly node has the highest probability of insolvency and is the most

vulnerable one. Moreover, it holds

P (∃i : x∗i < 1)≥ 1− (0.5)n−1. (4.4)

(ii) The system is most stable when the assets are evenly distributed, i.e, αi = ᾱ
n
,∀i= 1, · · · , n.

Proof. We start with the first conclusion. Under Assumption 4.1, from Conclusion (ii) of The-

orem 2.2, we obtain that x∗i < 1, if αi < p̄i− (LT e)i = 0. Thus, we have

P (∃i : x∗i < 1) = P (∃i : αi + si < 0).

Therefore, the most vulnerable network can be identified via solving the following optimization

problem

min
α

∏
i

(1−P (si <−αi)) =
∏
i

F (αi) (4.5)

s.t.
∑
i

αi = ᾱ;

αi ≥ 0,

where F (·) is the cumulative distribution function of normal distribution with a density function

f(·). Note that the equality in the objective function follows from the symmetry of the shock

distribution. Since F (·) is strictly monotone, we can rewrite the problem as follows

min
α

∑
i

lnF (αi) (4.6)
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s.t.
∑
i

αi = ᾱ;

αi ≥ 0,

Because the objective and constraint functions in problem (4.6) are differentiable, the optimal

solution to the above problem must satisfy the Karush-Kuhn-Tucker (KKT) conditions (Boyd and

Vandenberghe 2004), i.e.,

∂ lnF (αi)

∂αi
+λ− νi = 0, ∀i= 1, · · · , n; (4.7)∑

i

αi = ᾱ (4.8)

νiαi = 0, ∀i= 1, · · · , n; (4.9)

αi ≥ 0, ∀i= 1, · · · , n;

νi ≥ 0, ∀i= 1, · · · , n.

where λ and ν are the Lagrange multipliers. From (4.9), it is easy to see that for every index i,

either αi or νi must be zero. Let us define the index sets based on the element values of ν by

I0 = {i : νi = 0}, I1 = {i : νi 6= 0}. (4.10)

It follows immediately that

αi = 0, ∀i∈ I1.

Using the above relation, we can rewrite the KKT conditions as

f(αi)

F (αi)
+λ= 0, ∀i∈ I0;

αi = 0, ∀i∈ I1;∑
i∈I0

αi = ᾱ.

Since the function f(·)/F (·) is a bijective map, from the above relations we can claim that

αi =
ᾱ

k
, ∀i∈ I0,

where k is the number of nodes in I0. Based on this, the objective function of (4.5) can be written

as a function of k, i.e.,

g(k) = F (ᾱ/k)kF (0)(n−k) = (2F (ᾱ/k))k(1/2)n.

We next show that g(k) is an increasing function with respect to k. For this, we take the first

derivative of lng(k) with respect to k as follows.

∂ lng(k)/∂k = ln2F (ᾱ/k)− (ᾱ/k)f(ᾱ/k)/F (ᾱ/k). (4.11)
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We also have that

lim
k→∞

ln 2F (ᾱ/k)− (ᾱ/k)f(ᾱ/k)/F (ᾱ/k) = 0. (4.12)

Now, if we take the second derivative of lng(k) with respect to k, we have

∂2 lng(k)/∂k2 =−ᾱ3f(ᾱ/k)/σ2F (ᾱ/k)− ᾱ2f(ᾱ/k)2/k3F (ᾱ/k)2 < 0. (4.13)

From (4.12) and (4.13), we can conclude that for small value of k, ∂ lng(k)

∂k
> 0, which implies that

g(k) is increasing in k. Based on this, one can conclude that the objective value of (4.5) attains its

minimum when k= 1, i.e., there exists an index i such that

α∗j = ᾱ, α∗i = 0, ∀i 6= j.

From the above relation and the symmetry of the shock distribution we obtain

P (∃i : x∗i < 1) = 1−
∏
i

(1−P (si <−αi));

≥ 1−
∏
i 6=j

(1−P (si <−αi));

= 1− (0.5)n−1,

where the inequlity follows from the fact that (1−P (sj <−αj))≤ 1.

Similarly, since k ≤ n, we can conclude that the maximum value of g(k) can be obtained when

the assets are evenly distributed as below.

α∗i =
ᾱ

n
, ∀i= 1, · · · , n.

This finishes the proof of the theorem. �

Theorem 4.1 shows that for problem (2.1), the monopoly case is the most vulnerable in terms

of probability of insolvency. We note that Glasserman and Young (2015) estimated the probability

of a subset of nodes to default caused by the shock received by a single node not in that subset,

and obtained a similar result as Conclusion (ii) of Theorem 4.1 (see Proposition 1 and Corollary

1 in Glasserman and Young (2015)). Chen et al. (2016) also extend the results in Glasserman

and Young (2015) by considering the impact of the liquidity concentration on the bank. It is

worthwhile mentioning that the proof of the theorem depends only on the two properties that the

function (f(·)/F (·)) is bijective, and the function g(k) is decreasing. This implies that the results in

Theorem 4.1 can be extended to any shocks that follows some distribution with a density function

and an accumulative function such that these two properties are satisfied.
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4.3. Probability of bankruptcy in the system

In this subsection, we estimate the probability of bankruptcy in the system. Throughout this

subsection, we make the following assumption.

Assumption 4.2. All the shocks follow some independent normal distributions with a zero mean

and variance σ2
i , i.e., si ∼N (0, σ2

i ).

Theorem 4.2. Suppose that Assumption 4.2 holds. Then the probability that some bank (i =

1, · · · , n) will be bankrupted is larger than

1−
∏
i

(1−P (si ≤∆i−αi)). (4.14)

Proof. Without loss of generality, we assume x∗i = 0. Given any i, we rewrite the reduced

problem (3.10) w.r.t. the shock s as follows.

−∆i(s) = max
∑
j 6=i

ljixj (4.15)

s.t. p̄jxj −
∑

k 6=j,k 6=i

lkjxk ≤ αj + sj, ∀j 6= i;

xj ≤ 1, ∀j 6= i.

The dual problem of (4.15) reads as

−∆i(s) = min
∑
j 6=i

(αj + sj − p̄j +
∑

k 6=j,k 6=i

ljk)yj +
∑
j 6=i

lji (4.16)

s.t. p̄jyj −
∑

k 6=j,k 6=i

ljkyk ≤ lji, ∀j 6= i;

y≥ 0.

Let Y denotes the feasible set of problem (4.16). Since all the variables sj ∀j = 1, · · · , n are inde-

pendent random variables sj ∼N (0, σ2
j ), it follows from Theorem 3.1 that

P (x∗i ≤ 0) = P (si ≤−E[min
y∈Y

∑
j 6=i

(αj + sj − p̄j +
∑

k 6=j,k 6=i

ljk)y
i
j +
∑
j 6=i

lji]−αi),

where E[·] denotes the expected value of −∆i(s). Note that the dual problem (4.16) is a linear

optimization problem parameterized by the random noise s. From a computational perspective, we

can use stochastic programming and scenario generation to estimate the probability P (x∗i < 0). In

what follows we present a simple way to obtain a lower bound on the the probability P (x∗i < 0).

Since the objective function in problem (4.16) is linear in terms of s, −∆i(s) is concave with respect

to s. It follows immediately

E[min
y∈Y

∑
j 6=i

(αj + sj − p̄j +
∑

k 6=j,k 6=i

ljk)yj +
∑
j 6=i

lji]
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≥min
y∈Y

∑
j 6=i

E(αj + sj − p̄j +
∑

k 6=j,k 6=i

ljk)yj +
∑
j 6=i

lji

= min
y∈Y

∑
j 6=i

E(αj − p̄j +
∑

k 6=j,k 6=i

ljk)yj +
∑
j 6=i

lji

=−∆i,

where the first inequality follows from the concavity of −∆i(s) w.r.t. s and the fact that all the

parameters in (4.16) except s are constant, and the first equality follows from the assumption

E[sj] = 0, ∀j = 1, · · · , n. Thus, we have

P (x∗i ≤ 0)≥ P (si ≤∆i−αi), (4.17)

which further implies

1−
∏
i

(1−P (x∗i ≤ 0))≥ 1−
∏
i

(1−P (si ≤∆i−αi)).

This completes the proof of the theorem. �

Theorem 4.2 provides an estimation on the lower bound for the probability that some bank will

be bankrupted in the system. Such an estimate depends on the current asset vector and interbank

liability matrix. Therefore, it may help the clearing agent to identify the future risk of bankruptcy

in the system based on the current market information, and implement policies to avoid such a

risk in advance.

We next study the vulnerability of a specific network with monopoly node under some assumption

about the monopoly node in it. For this, we first introduce the following definition.

Definition 4.4. A node i in the financial network is said to be liability-free, if the following

relation holds.

lij = 0, ∀j = 1, · · · , n, j 6= i.

We have

Theorem 4.3. Given a network with a monopoly node in which the monopoly node is liability-

free, and all the other nodes are well-balanced. Suppose that Assumption 4.2 hold. Then we have

P (∃j : x∗j ≤ 0)≥ 0.5.

Proof. W.l.o.g., we assume that the first node is the monopoly node. In this case, we have

l1j = 0,∀j = 1, · · · , n, and αi = 0,∀i 6= 1. In such a case, we can rewrite problem (2.2) as follows

max
∑
i

p̄ixi (4.18)

s.t. p̄1x1−
∑
k≥2

lk1xk ≤ α1;

p̄jxj −
∑
k≥2

lkjxk ≤ sj, ∀j = 2, · · · , n; (4.19)

xj ≤ 1, ∀j = 1, · · · , n.
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By summing up the left-had sides of the constraints (4.19), we obtain

n∑
j=2

(
p̄jxj −

∑
k≥2

lkjxk

)
=
∑
k≥2

lk1xk ≤
n∑
j=2

sj, (4.20)

where the first equality follows from the fact that all the non-monopoly nodes are balanced.

From (4.20), we can conclude that if all the elements of x are positive, then it must hold
∑n

j=2 sj > 0.

In other words, if
∑n

j=2 sj ≤ 0, then x must have some element less than or equal 0. It follows from

the symmetry of the shock distribution that

P (∃j : x∗j ≤ 0)≥ P (
n∑
i=1

si ≤ 0) = 0.5.

This completes the proof of the theorem. �

Theorem 4.3 shows the high risk in a financial network with a monopoly node that is liability-

free. The theorem also implies that if a monopoly node in the system bankrupts, then there is a

high probability of bankruptcy in the reduced system consisting of all the non-monopoly nodes.

We next provide some numerical examples to verify our theoretical results.

Example 4.2. We consider the same data matrix as in Example 2.1. The vector of asset α1 =

(7674.5,7674.5,7674.5,7674.5)T is computed based on data from Table 3 in Chen et al. (2016) ( In

a recent FDIC report FDIC Bank Data and Statistics (2013), the total equity (which we call asset

in this paper) is reported to be about 14.4% of the total liability.). We also generate a new asset

vector α2 = (30698,0,0,0)T corresponding to a system with a monopoly node.

Table 9 Bankruptcy in a Financial Network with Random Shock

0<x∗i < 1 x∗i ≤ 0
∑

i(αi + si)< 0

9493 2 505 α1

8854 582 564 α2

Node α1 α2

∆i P (si ≤∆i−αi) ∆i P (si ≤∆i−αi)
1 -23023.5 0.0000013 0.000028 0.0000013

2 -23023.5 0.0000040 -15833.2 0.0107076

3 -23023.5 0.0033758 -21063.5 0.0315362

4 -23023.5 0.0053317 -21873.7 0.0344167

We use MATLAB function NORMRAND to generate random vectors of shock with Normal distri-

bution under the assumption that si ∼N (0, σ2
i ), ∀i= 1, · · · , n. For each node i, we set σi = 0.25p̄i.

The results are summarized in Table 9.
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Since α1 > 0 and the system is well-balanced, all the nodes in the system are solvent when

there is no market shocks. As shown in Table 9, there are 507 bankruptcy cases observed in our

experiments under random shocks, showing an empirical probability bound P (x∗i < 0) = 0.0507.

For each i = 1,2,3,4, we also compute the value of ∆i via solving problem (3.10). Based on the

values of ∆is, we can obtain the following bound on probability of bankruptcy in the system

1−
∏
i

(1−P (si ≤∆i−αi)) = 0.0086≤ 0.0507.

We next consider a system with a monopoly node (node 1) and the asset vector α2. Note that all

the banks in the system are solvent if there is no shocks in the market. According to Theorem 4.1,

it has the highest probability of insolvency. As shown in Table 9, the empirical probability of

bankruptcy is 0.1146. Based on the computed values of ∆is, we obtain a lower bound as follows

1−
∏
i

(1−P (si ≤∆i−αi)) = 0.0748≤ 0.1146.

One can easily see from Table 9 that the values of ∆is are much larger in a network with a

monopoly node. One can also see from Table 9 that for all the randomly generated scenarios of

the system with a monopoly node, there are insolvent nodes in the system, indicating an empirical

probability 1 of insolvency. This is consistent with Theorem 4.1, which provides a lower bound for

the probability of insolvency as below:

P (∃i : x∗i < 1)≥ 1− (0.5)3 = 0.875.

We next consider a financial network with a liability-free monopoly node. The liability matrix and

the asset vector are given in the following table.

Example 4.3. Table 10 Bankruptcy in a financial network with liability free monopoly node

Liability Matrix

Node 1 2 3 4 p̄ α

1 0 0 0 0 0 30698

2 4857 0 10625 12047 27529 0

3 9971 10625 0 24734 45330 0

4 11306 12047 24734 0 48087 0

Claims 26134 22672 35359 367810 120946 30698

0<x∗i < 1 x∗i ≤ 0
∑

i(αi + si)< 0

4057 5518 371

We use the same procedure as in Example 4.2 to generate random shocks. As shown in Table 10,

there are 5889 bankruptcy cases observed, showing an empirical probability of bankruptcy P (x∗i <

0) = 0.5889, which is larger than the theoretical bound provided by Theorem 4.3.
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5. The Domino Effect of Bankruptcy in A Financial Network with A
Monopoly Node

In this section, we estimate the domino effect of bankruptcy in a well-balanced network with a

monopoly node. This is motivated by several observations. First of all, as shown in the previous

section, the network with a monopoly node is the most vulnerable one in terms of asset distribution.

Second, massive bankruptcies had been observed during the 2007-2008 financial crisis. Due to the

severe consequence of the domino effect of bankruptcy, it is of interests to explore the network

structure under which the bankruptcy of some node in the network will cause other nodes to be

bankrupted.

The following result regarding the domino effect of the monopoly node’s bankruptcy is intuitive.

For self-completeness, we also include a proof.

Proposition 5.1. Given a fully connected and well-balanced financial network with a monopoly

node. If the monopoly node is bankrupted, then all other nodes in the system will be bankrupted as

well.

Proof. For simplicity we assume that the first node is the monopoly node. Therefore, we can

rewrite problem (2.2) as follows

max p̄Tx (5.1)

s.t. p̄1x1−
∑
k>2

lk1xk ≤ ᾱ;

p̄jxj −
∑
k>2

lkjxk− l1jx1 ≤ 0, ∀j = 2, · · · , n− 1; (5.2)

x≤ e.

Now let us consider that the monopoly node is bankrupted, i.e., x∗1 ≤ 0. In this case, we first show

that at the optimal solution of (5.1) we have

x∗j = c, ∀j ≥ 2, c∈<. (5.3)

To show this, suppose to the contrary that (5.3) does not hold. Then there exists an index j∗ such

that x∗j∗ = maxj=2,··· ,n x
∗
j . Based on this, by rewriting feasibility condition (5.2) for index j∗, we

have

p̄j∗x
∗
j∗ −

∑
k>2

lkj∗x
∗
k ≤ l1j∗x∗1 ≤ 0.

Using the connectivity of the underlying network and following a similar vein as in the proof of

Lemma 2.1, we can conclude that (5.3) holds at the optimal solution of problem (5.1). Now it
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suffices to show that c ≤ 0. Since the network is fully connected, there exists m ≥ 2 satisfying

l1m > 0. Now recall the feasibility condition (5.2) for index m, we have

l1mx
∗
m = (p̄m−

∑
k>2

lkm)x∗m ≤ 0,

where the equality follows from the fact that the network is well-balanced. This implies that

x∗m = c≤ 0, which completes the proof of the proposition. �

Proposition 5.1 illustrates that the bankruptcy of the monopoly node will cause all other nodes

in the system to be bankrupted, which is consistent with the “too big to fail” theory. Next we study

how the bankruptcy of a non-monopoly will affect the system. For this, we consider a well-balanced

network with a tridiagonal structure specified below.

Assumption 5.1. A financial network is said to have a tridiagonal structure if it satisfies the

following relations:

lij > 0, ∀(i, j)∈ {(i, j) : |i− j| ≤ 1, ∀i, j = 1, · · · , n}. (5.4)

We remark that the above structure is identified in recent work by Aein and Peng (2017). Next we

study the domino effect of bankruptcy in a balanced network with a tridiagonal structure and the

first node as a monopoly node.

Proposition 5.2. Given a well-balanced network with a tridiagonal structure and a monopoly

node. If a non-monopoly node is bankrupted, then all the nodes following it will be bankrupted.

Proof. Let us rewrite problem (2.2) as follows

max p̄Tx (5.5)

s.t. p̄1x1− l21x2 ≤ ᾱ;

p̄jxj − l(j−1)jxj−1− l(j+1)jxj+1 ≤ 0, ∀j = 2, · · · , n− 1; (5.6)

p̄nxn− l(n−1)nxn−1 ≤ 0;

x≤ e.

Since the network is well-balanced and has a tridiagonal structure, we have p̄n = l(n−1)n and p̄1 = l21.

Based on this, at the optimal solution of (5.5), we have

x∗n ≤ x∗n−1. (5.7)

Now, let us consider (5.6) for j = n− 1. In this case, we have,

p̄n−1xn−1− l(n−2)(n−1)xn−2− l(n)(n−1)xn

= l(n−2)(n−1)(xn−1−xn−2) + l(n)(n−1)(xn−1−xn)≤ 0 (5.8)
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The equality follows from the fact that p̄n−1 = l(n−2)(n−1) + l(n)(n−1). From (5.7) and (5.8), we have

x∗n ≤ x∗n−1 ≤ x∗n−2.

Following a similar procedure for j ≤ n− 2, we can obtain

x∗n ≤ x∗n−1 ≤ · · · ≤ x∗1.

This implies that when a non-monopoly node i become bankrupted, i.e., x∗i ≤ 0, we have

x∗n ≤ x∗n−1 ≤ · · · ≤ x∗i ≤ 0.

This finishes the proof of this proposition. �

Proposition 5.2 shows that if the network has a tridiagonal structure and a solvent monopoly

node, then the bankruptcy of every non-monopoly node will still have a significant domino effect.

In other words, the solvency of big banks cannot avoid massive bankruptcies if the financial net-

work has a tridiagonal structure and is dominated only by a few big banks. We remark that during

the 2007-2008 financial crisis, the federal government bailed out numerous major banks to stabi-

lize the market. Nevertheless, a large number of banks still bankrupted during the crisis period.

Proposition 5.2 provides an interesting interpretation to such a phenomenon.

Next, we provide a numerical example to verify the conclusions in the proposition.

Example 5.1. We consider a tridiagonal financial network with four banks in which the first

node is the monopoly node (ᾱ= α1). The liability matrix is extracted from the liability matrix (see

Table 8 in Chen et al. (2016)) by considering the first four banks in the network. The asset vector

and the optimal solutions are also listed below.

In this example, a shock of magnitude s1 <−ᾱ will cause node 1 to be bankrupted (x∗1 < 0). Fol-

lowing this, the whole system will be bankrupted. In other words, the bankruptcy of the monopoly

node will be propagated to the whole network. This domino phenomenon is consistent with the

so-called “too big to fail” theory, which advocates for government’s intervenience in a period of

financial crisis.

Example 5.1 demonstrates that not only the failure of the monopoly node in the network, but

also the failure of a non-monopoly node may lead to a catastrophic disaster. As one can see from

Table 11, under a negative shock of magnitude s2 = −31855 triggering node 2 we have x∗2 = 0.

Following this, we have x∗3 = x∗4 = 0. This shows that the monopoly network with a tridiagonal

structure is very fragile, and the bankruptcy of a non-monopoly node in the network may have a

domino effect too.
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Table 11 Domino Effect of Bankruptcy in a Tridiagonal Financial Network with a Monopoly Node.

Liability Matrix

Node 1 2 3 4 p̄ α

1 0 31855 0 0 31855 32698

2 31855 0 18016 0 49871 0

3 0 18016 0 73185 91201 0

4 0 0 73185 0 73185 0

Claims 31855 49871 91201 73185 246112 32698

Optimal Solution
x∗1 x∗2 x∗3 x∗4

1 1 1 1 α

1 0 0 0 α2− =−31855

6. Conclusions

In this paper, we study the vulnerability of the financial network via analyzing the infeasibility of

Eisenberg-Noe’s linear optimization model and its relaxation. We show that as long as the total

asset is nonnegative, the relaxation model is feasible. Under the assumption that only a single

bank is exposed to market shock, we characterize conditions under which a single bank is solvent,

default, or bankrupted.

For the generic scenario where all banks are triggered by market shocks, we show that both the

total asset and the asset inequality may affect the stability of financial network. Particularly, we

show that while a larger total asset may not improve the stability of the network, a larger asset

inequality will reduce the stability of the network. We estimate the probability of insolvency and the

probability of bankruptcy under certain assumptions on network structure and shock distribution.

Particularly, we carry out a deterministic analysis showing that the least stable network can be

attained at some network with a monopoly node, and show that the such a network has the highest

probability of insolvency and is the most vulnerable network. We also study the contagious effect

of bankruptcy under the network with a monopoly node and tridiagonal structure.

Several issues are of interests for future research. The first issue is how to identify the structure of

the liability matrix such that the resulting system is the most or least stable one. Progress in such

a topic will provide insights for the clearing agent on which kind of policies should be implemented

in advance to prevent a catastrophic disaster. The second issue is, though we have provided a lower

bound for the probability of bankruptcy in the network, we do observe in our experiments that

there is a large gap between the empirical bound and the theoretical lower bound. Further study

is needed to close such a gap. Finally we point out that after the financial crisis in 2007-2008,
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new regulations have been implemented/enforced for the financial market. It will be interesting to

incorporate the new regulations in the assessment of systemic risk.
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